MPLS Fast Reroute Kireeti Kompella kireeti@juniper.net

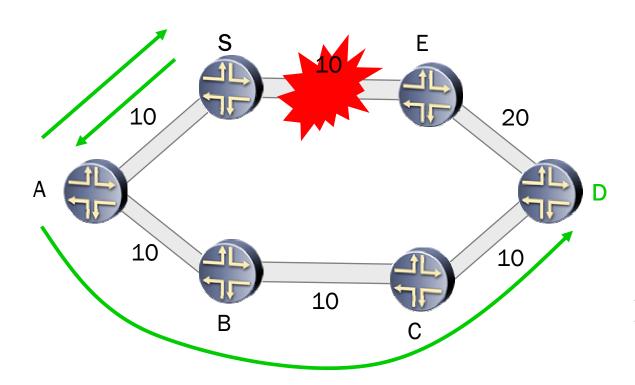
Agenda

- Fast reroute for IP and LDP traffic
 - We already know how to do RSVP-TE fast reroute
- Two independent but related problems
 - Fast repair
 - Safe IGP convergence (not covered here)
- For each, an analysis of
 - "coverage"
 - feasibility
 - scalability

Problem: IP/LDP Fast Reroute

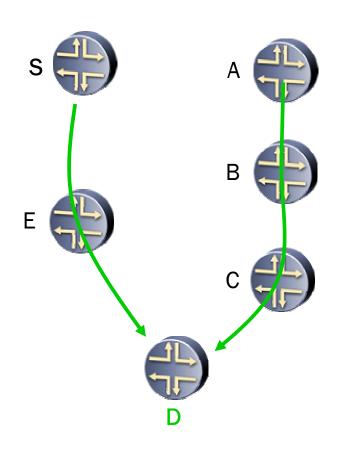
- IGP convergence within a node takes 100s of milliseconds to compute SPF and update FIB
 - Can be made faster with incremental SPF, but ...
- ... network convergence of a link-state IGP is a distributed problem
- Two parts
 - fast repair
 - distributed convergence

(This presentation will focus on IP fast reroute and link failures; generalization to LDP and node failures is fairly straightforward)


Fast Repair Techniques

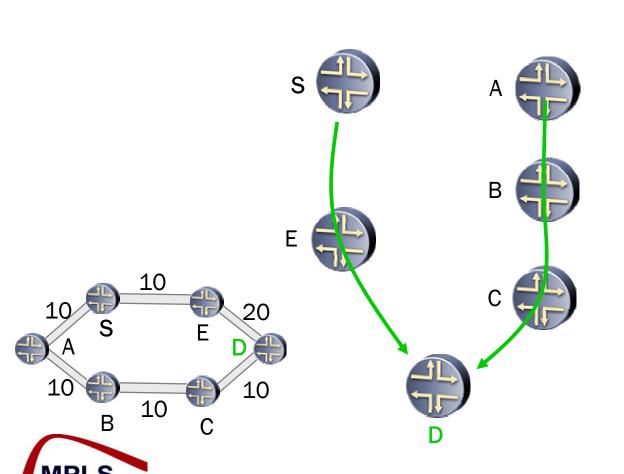
- Loop-free alternates
- U-turn alternates
- IP tunnels
- RSVP-TE (source-routed) bypass tunnels

Illustrative Network Diagram

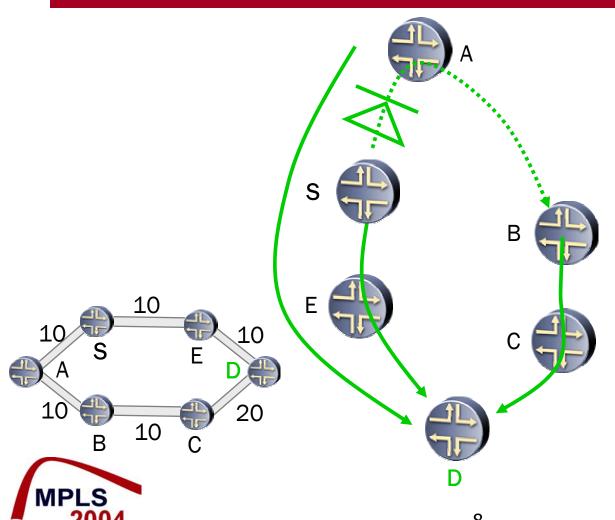


Consider
traffic
from S to D
which flows
S→E→D
Now,
suppose that
link SE fails

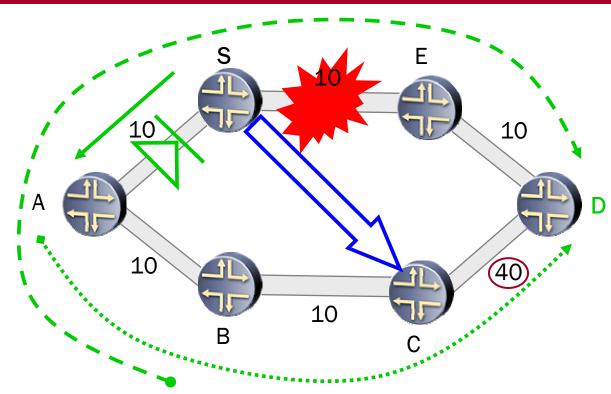
Useful Analogy


Packets flowing along the shortest path will be viewed as water flowing downhill

"Downhill" depends very much on the destination


"Loop Free Alternate"

For a given destination, a neighbor of yours whose downhill path doesn't go through you is a "loop-free alternate"


"U-Turn Alternate"

A neighbor of yours whose downhill path does go through you but is capable of diode-like behaviour

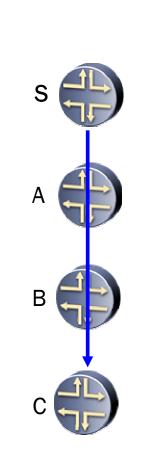
IP Tunnels for Fast Reroute

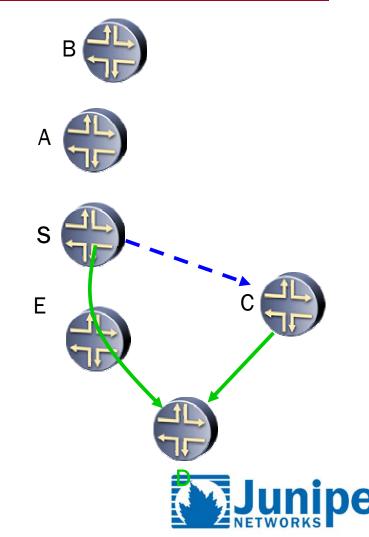
However, if S could reroute **directly to C**, it would work

Suppose in this case A is assumed to be a U-turn alternate.

On failure, S reroutes to A, who sends it to B ...

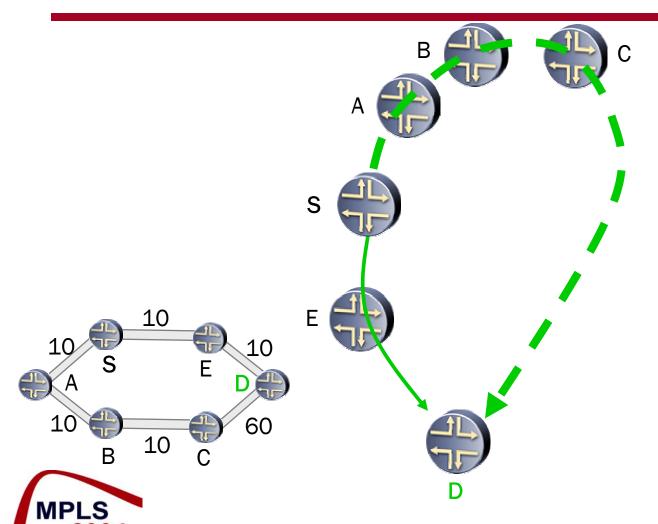
... but B sends it right back!





IP Tunnels: How They Work

First, find a node X such that
i) X is "below" S,
ii) the destination D is below X
X is a distant loop-free alternate


Then, (on failure) encapsulate (tunnel) packets destined to D to X

Source Routed Tunnels

Following the analogy of water flowing downhill, a source-routed tunnel is a pump strong enough to defy gravity

Analysis: Coverage

- Loop-free alt < U-turn alt < source routing
- 2. Loop-free alt < IP tunnel (*) < source routing
- Source routing is provably 100% coverage (assuming the network topology after failure is still connected)
- 4. U-turn alternatives and IP tunnels are not comparable -- depends on network topology

Note: "x < y" means for **every** graph G, if technique x works, technique y works; AND for some graph G, y works, but x does not work

Analysis: Feasibility

- Identifying loop-free alternates requires one "normal" SPF on behalf of each neighbor; a node needs to do this for each of its destinations
- Checking if a node can be a U-turn alternative needs some funky SPF-like computations; a node has to do this for each <neighbor, destination>
- Looking for "distant" loop-free alternates involves doing one "spanning tree" computation, and one "reverse spanning tree" for each destination
- Finding source-routed paths involves one Constrained SPF (CSPF) for every adjacent link

Analysis: Scalability Parameters

- First, some concepts
 - Nexthops: immediate neighbors
 - Next-next-hops: neighbors at a distance of 2
 - Destinations: exit points in a given network
 - Routes: IP prefixes
- Typical numbers:
 - Nexthops: 3-8
 - Next-next-hops: 10-50
 - Destinations: 50-500
 - Routes: 100K-250K

Analysis: Scalability

- Control plane: computations, size of RIB
- Data (forwarding) plane: size of FIB
- Comparisons:
 - Computations done **before** a failure can be relatively long and intense
 - Computations done in reaction to a failure must be fast (or better, none)
 - RIB memory is large and cheap
 - FIB memory is small and expensive

The Cost of Protecting a Link L

- Loop-free alternate: for each **destination** whose shortest path traverses **L**, find a loop-free alternate (if any) in case **L** fails
- U-turn alternate:
 - For each **destination** whose shortest path traverses **L**, find a loop-free *or* U-turn alternate
 - For each **neighbor**, see if you could be a U-turn alternate for neighbor; if so, inform neighbor and continue to next step
 - for each <destination, neighbor>, install a "diode route" (if available) in the FIB

The Cost of Protecting a Link L

■ IP tunnels:

- For each **destination** D whose shortest path traverses L, find a *distant* loop-free alternate X
- On failure, encapsulate packets to **D** with an IP destination of **X** (e.g., using IP tunnels)
- Source-routed tunnels
 - For each nexthop N on the other side of L, find a source routed path to N that avoids L (CSPF)
 - On failure of L, switch packets to D to source routed-path (e.g., by pushing an MPLS label)

Solution Comparison

	Coverage	Control Plane	FIB updates	FIB size impact	Sexiness
Loop-free Alts	Low	Low	Medium	Low	Low
U-turn Alts	High	High	Medium	High	High
IP Tunnels	High (*)	High	Medium	Medium	Medium
Source routing	100%	Low	Low	Low	Low

Caveats

- The analysis done here for U-turn alternates and IP tunnels was fairly unsophisticated
 - Perhaps, on discussion with the respective authors, more sophisticated and efficient computations and/or FIB representations will emerge
 - Documenting the impact on the control plane and on the FIB is a vital part of the analysis
- There is an "allergy" factor (folks coming out in hives if MPLS or source routing is mentioned) that has been deliberately ignored here
 - Not enough value is given to the simplicity of delivering a packet where it was meant to go

Summary

- IP/LDP fast reroute is a real problem
- There are a wealth of solutions
- A well-reasoned analysis of several factors is mandatory before embarking on more detailed solutions and clearly before deployment
 - Much of this is missing in current documents
 - If all else is equal, existing and deployed mechanisms should be given an edge
- This talk is a first step: it presents some of the axes and scalability parameters for the analysis

